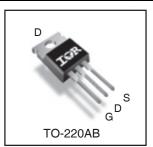


IRFB4110PbF

HEXFET® Power MOSFET

Applications


- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

V _{DSS}	100V
R _{DS(on)} typ.	$\mathbf{3.7m}\Omega$
max.	4.5m $Ω$
D (Silicon Limited)	180A ①
I _{D (Package Limited)}	120A

Benefits

- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead Free
- RoHS Compliant, Halogen-Free

G	D	S
Gate	Drain	Source

Base Part Number	Package Type	Standar	d Pack	Orderable Part Number		
Base Fait Namber	Form		Quantity	Orderable rait Hamber		
IRFB4110PbF	TO-220	Tube	50	IRFB4110PbF		

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, VGS @ 10V (Silicon Limited)	180①	Α
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	130①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	120	
I _{DM}	Pulsed Drain Current ②	670	
P _D @T _C = 25°C	Maximum Power Dissipation	370	W
	Linear Derating Factor	2.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ®	5.3	V/ns
T _J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300	
	(1.6mm from case)		
	Mounting torque, 6-32 or M3 screw	10lb·in (1.1N·m)	

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ③	190	mJ
I _{AR}	Avalanche Current ©	See Fig. 14, 15, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ®		mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		0.402	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		62	

Static @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.108		V/°C	Reference to 25°C, I _D = 5mA@
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.7	4.5	mΩ	$V_{GS} = 10V, I_D = 75A \ \odot$
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 100V, V_{GS} = 0V$
				250		$V_{DS} = 100V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	160			S	$V_{DS} = 50V, I_{D} = 75A$
Q_g	Total Gate Charge		150	210	nC	$I_D = 75A$
Q_{gs}	Gate-to-Source Charge		35			$V_{DS} = 50V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		43			V _{GS} = 10V ⑤
R _G	Gate Resistance		1.3		Ω	
t _{d(on)}	Turn-On Delay Time		25		ns	$V_{DD} = 65V$
t _r	Rise Time		67			$I_D = 75A$
t _{d(off)}	Turn-Off Delay Time		78			$R_G = 2.6\Omega$
t _f	Fall Time		88			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		9620		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		670			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		250			f = 1.0MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)		820			$V_{GS} = 0V$, $V_{DS} = 0V$ to $80V$ ®
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		950			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 80V $

Diode Characteristics

Diouc Ona	blode offaracteristics						
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current			170①	Α	MOSFET symbol	
	(Body Diode)					showing the	
I _{SM}	Pulsed Source Current			670		integral reverse	
	(Body Diode) ②⑦					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 75A$, $V_{GS} = 0V$ $\$$	
t _{rr}	Reverse Recovery Time		50	75	ns	$T_J = 25^{\circ}C$ $V_R = 85V$,	
			60	90		$T_J = 125^{\circ}C$ $I_F = 75A$	
Q _{rr}	Reverse Recovery Charge		94	140	nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \odot	
			140	210		$T_J = 125^{\circ}C$	
I _{RRM}	Reverse Recovery Current		3.5		Α	$T_J = 25^{\circ}C$	
t _{on}	Forward Turn-On Time	Intrins	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- 2 Repetitive rating; pulse width limited by max. junction temperature.
- ③ Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.033mH $R_G = 25\Omega$, $I_{AS} = 108A$, $V_{GS} = 10V$. Part not recommended for use above this value.
- ⑤ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{\text{DSS}}.$
- O Coss eff. (ER) is a fixed capacitance that gives the same energy as $C_{oss}\,\text{while}\,\,V_{DS}\,\text{is rising from 0 to 80\%}\,\,V_{DSS}.$
- ® When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994.
- R₀ is measured at T_J approximately 90°C.