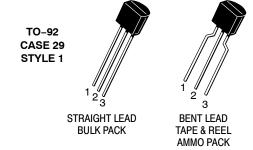


General Purpose Transistors

NPN Silicon


2N3903, 2N3904

Features

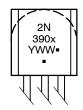
• Pb-Free Packages are Available*

BASE 1 EMITTER

COLLECTOR

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	I _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C


THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Indicates Data in addition to JEDEC Requirements.

MARKING DIAGRAMS

x = 3 or 4
 Y = Year
 WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

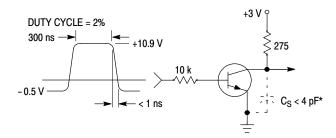
See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

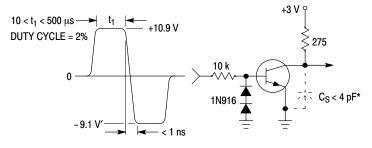
2N3903, 2N3904

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)


	Characteristic		Symbol	Min	Max	Unit
OFF CHARACTER	IISTICS			•	-	•
Collector - Emitter i	Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$))	V _{(BR)CEO}	40	-	Vdc
Collector - Base Br	eakdown Voltage (I _C = 10 μAdc, I _E = 0)		V _{(BR)CBO}	60	-	Vdc
Emitter - Base Brea	akdown Voltage (I _E = 10 μAdc, I _C = 0)		V _{(BR)EBO}	6.0	-	Vdc
Base Cutoff Currer	nt (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{BL}	-	50	nAdc
Collector Cutoff Cu	irrent (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc)		I _{CEX}	_	50	nAdc
ON CHARACTERIS	STICS	-		•	•	•
DC Current Gain (No. (I _C = 0.1 mAdc, V _C		2N3903	h _{FE}	20	_	-
$(I_C = 1.0 \text{ mAdc}, V_C)$	_E = 1.0 Vdc)	2N3904 2N3903 2N3904		40 35 70	- - -	
(I_C = 10 mAdc, V_{CE}	= 1.0 Vdc)	2N3903		50	150	
$(I_C = 50 \text{ mAdc}, V_{CE})$	= 1.0 Vdc)	2N3904 2N3903		100 30	300	
(I _C = 100 mAdc, V _C	_{DE} = 1.0 Vdc)	2N3904 2N3903		60 15	_ _	
		2N3904		30	_	
Collector – Emitter $(I_C = 10 \text{ mAdc}, I_B = (I_C = 50 \text{ mAdc}, I_B = 10 \text{ mAdc})$			V _{CE(sat)}	_ _	0.2 0.3	Vdc
Base – Emitter Satu ($I_C = 10 \text{ mAdc}$, $I_B = (I_C = 50 \text{ mAdc}$, $I_B = 10 \text{ mAdc}$			V _{BE(sat)}	0.65	0.85 0.95	Vdc
SMALL-SIGNAL (CHARACTERISTICS	I		1	1	
Current – Gain – Ba (I _C = 10 mAdc, V _{CE}	andwidth Product = = 20 Vdc, f = 100 MHz)	2N3903	f _T	250	_	MHz
0.44 0	- // - COVII- - O. F. 4 O.M.I)	2N3904		300	-	
	e (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	4.0	pF
	(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	8.0	pF
Input Impedance $(I_C = 1.0 \text{ mAdc}, V_C)$	_E = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
Voltage Feedback (I _C = 1.0 mAdc, V _C	Ratio E = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
Small–Signal Curre $(I_C = 1.0 \text{ mAdc}, V_C)$	ent Gain _E = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{fe}	50 100	200 400	_
Output Admittance	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
Noise Figure $(I_C = 100 \mu Adc, V_C)$	_E = 5.0 Vdc, R _S = 1.0 k Ω, f = 1.0 kHz)	2N3903 2N3904	NF		6.0 5.0	dB
SWITCHING CHAP	RACTERISTICS	I		<u>I</u>	1	
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = 0.5 Vdc,		t _d	_	35	ns
Rise Time	$I_{C} = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$	-	t _r	_	35	ns
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc}, I_{B1} = I_{B2} = 1.0 \text{ mAdc})$	2N3903 2N3904	t _s		175 200	ns
Fall Time		-	t _f	_	50	ns

^{2.} Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2%.

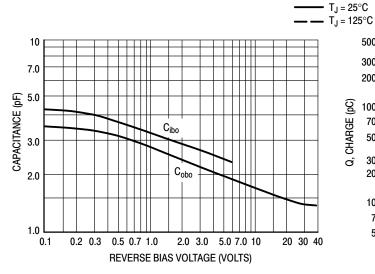
ORDERING INFORMATION


Device	Package	Shipping [†]
2N3903RLRM	TO-92	2000 / Ammo Pack
2N3904	TO-92	5000 Units / Bulk
2N3904G	TO-92 (Pb-Free)	5000 Units / Bulk
2N3904RLRA	TO-92	2000 / Tape & Reel
2N3904RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904RLRM	TO-92	2000 / Ammo Pack
2N3904RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RLRP	TO-92	2000 / Ammo Pack
2N3904RLRPG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N3904RL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
2N3904ZL1	TO-92	2000 / Ammo Pack
2N3904ZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit



* Total shunt capacitance of test jig and connectors

Figure 2. Storage and Fall Time Equivalent Test Circuit

2N3903, 2N3904

TYPICAL TRANSIENT CHARACTERISTICS

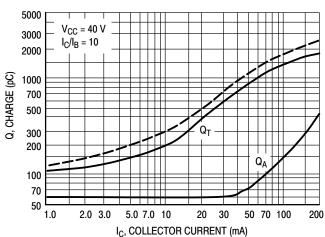
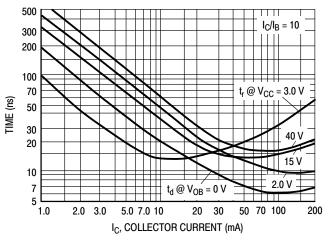



Figure 3. Capacitance

Figure 4. Charge Data

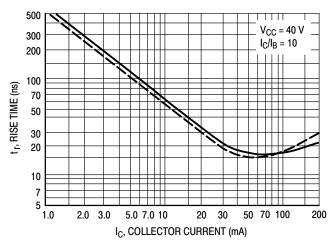
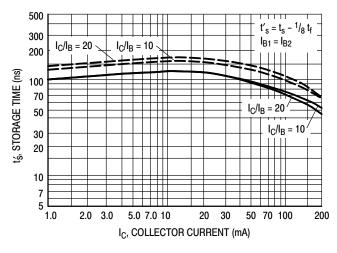



Figure 5. Turn - On Time

Figure 6. Rise Time

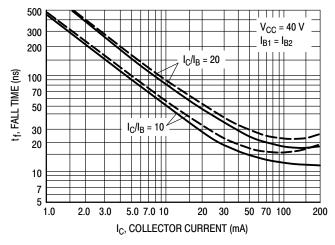


Figure 7. Storage Time

Figure 8. Fall Time

DOCUMENT	NUMBER:
08 V S B 42022	R

PAGE 3 OF 3

ISSUE	REVISION	DATE
AM	ADDED BENT-LEAD TAPE & REEL VERSION. REQ. BY J. SUPINA.	09 MAR 2007

ON Semiconductor and 💵 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application of use of any product or circuit, and specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death. associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.