Preferred Device # **SWITCHMODE™ Series NPN Silicon Power Transistors** The MJE13009 is designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits. #### **Features** - V_{CEO(sus)} 400 V and 300 V - Reverse Bias SOA with Inductive Loads @ $T_C = 100$ °C - Inductive Switching Matrix 3 to 12 Amp, 25 and 100°C t_c @ 8 A, 100°C is 120 ns (Typ) - 700 V Blocking Capability - SOA and Switching Applications Information - Pb-Free Package is Available* #### **MAXIMUM RATINGS** | Rating | | Symbol | Value | Unit | |--|--|-----------------------------------|----------------|-----------| | Collector-Emitter Voltage | | V _{CEO(sus)} | 400 | Vdc | | Collector–Emitter Voltage | | V _{CEV} | 700 | Vdc | | Emitter-Base Voltage | | V _{EBO} | 9 | Vdc | | Collector Current | ContinuousPeak (Note 1) | I _C | 12
24 | Adc | | Base Current | ContinuousPeak (Note 1) | I _B | 6
12 | Adc | | Emitter Current | ContinuousPeak (Note 1) | I _E | 18
36 | Adc | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | | P _D | 2
16 | W
W/°C | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | | P _D | 100
800 | W
W/°C | | Operating and Storage Junction
Temperature Range | | T _J , T _{stg} | -65 to
+150 | °C | ### THERMAL CHARACTERISTICS | Characteristics | Symbol | Max | Unit | |--|-----------------|------|------| | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 1.25 | °C/W | | Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds | TL | 275 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # ON Semiconductor® http://onsemi.com # 12 AMPERE NPN SILICON POWER TRANSISTOR 400 VOLTS – 100 WATTS TO-220AB CASE 221A-09 STYLE 1 ### **MARKING DIAGRAM** A = Assembly Location Y = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping | |-----------|---------------------|-----------------| | MJE13009 | TO-220 | 50 Units / Rail | | MJE13009G | TO-220
(Pb-Free) | 50 Units / Rail | **Preferred** devices are recommended choices for future use and best overall value. # **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--|--|-----------------------|------------------------------|------------------|--------------------|------| | OFF CHARACTERISTICS | S (Note 2) | | | | | | | Collector–Emitter Sustaining Voltage (I _C = 10 mA, I _B = 0) | | V _{CEO(sus)} | 400 | _ | - | Vdc | | Collector Cutoff Current $(V_{CEV} = Rated \ Value, \ V_{BE(off)} = 1.5 \ Vdc)$ $(V_{CEV} = Rated \ Value, \ V_{BE(off)} = 1.5 \ Vdc, \ T_C = 100^{\circ}C)$ | | I _{CEV} | -
- | -
- | 1
5 | mAdc | | Emitter Cutoff Current
(V _{EB} = 9 Vdc, I _C = 0) | | I _{EBO} | _ | _ | 1 | mAdc | | SECOND BREAKDOWN | | | | | | | | | ector Current with base forward biased with Base Reverse Biased | I _{S/b} | See Figure 1
See Figure 2 | | | | | ON CHARACTERISTICS | (Note 2) | | | | | | | DC Current Gain
($I_C = 5$ Adc, $V_{CE} = 5$ V
($I_C = 8$ Adc, $V_{CE} = 5$ V | | h _{FE} | 8
6 | | 40
30 | | | Collector–Emitter Saturation Voltage $ \begin{aligned} &(I_C=5 \text{ Adc, } I_B=1 \text{ Adc}) \\ &(I_C=8 \text{ Adc, } I_B=1.6 \text{ Adc}) \\ &(I_C=12 \text{ Adc, } I_B=3 \text{ Adc}) \\ &(I_C=8 \text{ Adc, } I_B=1.6 \text{ Adc, } T_C=100^{\circ}\text{C}) \end{aligned} $ | | V _{CE(sat)} | -
-
-
- | -
-
-
- | 1
1.5
3
2 | Vdc | | Base–Emitter Saturation Voltage
($I_C = 5$ Adc, $I_B = 1$ Adc)
($I_C = 8$ Adc, $I_B = 1.6$ Adc)
($I_C = 8$ Adc, $I_B = 1.6$ Adc, $I_C = 100^{\circ}$ C) | | V _{BE(sat)} | -
-
- | -
-
- | 1.2
1.6
1.5 | Vdc | | DYNAMIC CHARACTER | ISTICS | | | | | | | Current–Gain – Bandwidth Product
(I _C = 500 mAdc, V _{CE} = 10 Vdc, f = 1 MHz) | | f _T | 4 | - | _ | MHz | | Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$ | | C _{ob} | _ | 180 | ı | pF | | SWITCHING CHARACTE | RISTICS | | | | | | | Resistive Load (Table 1 |) | | | | | | | Delay Time | $(V_{CC} = 125 \text{ Vdc}, I_C = 8 \text{ A},$ | t _d | _ | 0.06 | 0.1 | μs | | Rise Time | | t _r | - | 0.45 | 1 | μs | | Storage Time | $I_{B1} = I_{B2} = 1.6 \text{ A}, t_p = 25 \text{ μs},$
Duty Cycle $\leq 1\%$) | ts | _ | 1.3 | 3 | μs | | Fall Time | | t _f | - | 0.2 | 0.7 | μs | | Inductive Load, Clampe | ed (Table 1, Figure 13) | | | | | | | Voltage Storage Time | (I _C = 8 A, V _{clamp} = 300 Vdc, | t _{sv} | - | 0.92 | 2.3 | μs | | Crossover Time | $I_{B1} = 1.6 \text{ A}, V_{BE(off)} = 5 \text{ Vdc}, T_{C} = 100 ^{\circ}\text{C})$ | t _c | _ | 0.12 | 0.7 | μS | ^{2.} Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%. Figure 1. Forward Bias Safe Operating Area Figure 2. Reverse Bias Switching Safe Operating Area The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown. Figure 3. Forward Bias Power Derating There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 1 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 1 may be found at any case temperature by using the appropriate curve on Figure 3. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Use of reverse biased safe operating area data (Figure 2) is discussed in the applications information section. Figure 4. Typical Thermal Response $[Z_{\theta,JC}(t)]$ Figure 5. DC Current Gain Figure 6. Collector Saturation Region Figure 7. Base-Emitter Saturation Voltage Figure 8. Collector–Emitter Saturation Voltage Figure 9. Collector Cutoff Region Figure 10. Capacitance #### PACKAGE DIMENSIONS # **TO-220AB** CASE 221A-09 **ISSUE AA** - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIMETERS | | | |-----|--------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | | В | 0.380 | 0.405 | 9.66 | 10.28 | | | С | 0.160 | 0.190 | 4.07 | 4.82 | | | D | 0.025 | 0.035 | 0.64 | 0.88 | | | F | 0.142 | 0.147 | 3.61 | 3.73 | | | G | 0.095 | 0.105 | 2.42 | 2.66 | | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | | J | 0.018 | 0.025 | 0.46 | 0.64 | | | K | 0.500 | 0.562 | 12.70 | 14.27 | | | L | 0.045 | 0.060 | 1.15 | 1.52 | | | N | 0.190 | 0.210 | 4.83 | 5.33 | | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | | R | 0.080 | 0.110 | 2.04 | 2.79 | | | S | 0.045 | 0.055 | 1.15 | 1.39 | | | T | 0.235 | 0.255 | 5.97 | 6.47 | | | U | 0.000 | 0.050 | 0.00 | 1.27 | | | ٧ | 0.045 | | 1.15 | | | | Z | | 0.080 | | 2.04 | | STYLE 1: PIN 1. BASE - 2. COLLECTOR - 3. EMITTER - COLLECTOR SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** # LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative